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Abstract
We investigate numerically the effect of non-condensable gas inside a vapor bubble on the bubble dynamics
and the collapse pressure. Free gas in the vapor bubble has a cushioning effect that can weaken the pressure
wave and enhance the bubble rebound. In order to access this effect numerically, simulations of collapsing
vapor bubbles containing non-condensable gas are performed. In the simulations, the effects of the gas on
the rebound and the shockwave energy are monitored for different operating points with varying initial gas
contents pg,0 inside the bubble and driving pressures ∆p. For the cavitating liquid and the non-condensable gas
we employ a homogeneous mixture model with a coupled equation of state for all components and the cavitation
model is a barotropic thermodynamic equilibrium model, which is embedded in a higher order implicit large
eddy approach for narrow stencils. Compressibility of all phases is considered, to capture the shockwave of the
bubble collapse. The effect of the free gas on the rebound and the dampening of the emitted shockwave by the
gas contained in the bubble are well captured by our simulations.
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Introduction
Liquids may contain dissolved gases that can be set free by pressure reduction or cavitation, leading to the
presence of gas in vapor cavities. In experiments of bubble collapses the gas content in bubbles was shown
to depend on whether they are generated using a laser or a spark and bubble dynamics were found to be
influenced by this [1]. Gas inside the vapor bubble has a cushioning effect that can weaken the pressure wave
and enhance bubble rebound. For spherical bubble collapses, this has already been investigated analytically
and experimentally. However, for more complex configurations, the effect of the gas is not yet clarified
and could be investigated with three-dimensional time resolved numerical simulations. Thus, the presented
work serves as a validation of our modeling approach and a basis for later investigations.

In a vapor bubble containing free gas the pressure is p = pvap+ pg, where pvap denotes the vapor pressure
and pg the partial pressure of the gas. pg depends on the compression of the bubble and assuming an
adiabatic transformation of the gas it can be described with pg(t) = pg,0 · (R/R0)

1/γ . The index 0 indicates
initial values and γ is the adiabatic index.

Tinguely et al. [2] experimentally and theoretically investigated the effects of the driving pressure
difference ∆p = p∞ − pvap and the gas content pg,0 on bubble dynamics and shockwave emission. For
their theoretical model they used an inviscid Keller Miksis model [3] taking advantage of the fact that it can
be treated to first order [4]:

ρ((1− v)R̈R+3/2 Ṙ2(1− v)) = (1− v)(pg−∆p)+Rṗg/c (1)

with v = Ṙ/c. Based on this model and their experimental measurements, they could show that the initial
energy of a bubble E0 =

4π

3 R3
0∆p [5] partitions mainly into rebound energy Ereb =

4π

3 R3
reb∆p and shockwave

energy ESW = 4πd2

ρc

∫
p(t)2dt [6]. In addition to this, they postulated that the energy partitioning between

rebound εreb and shock wave energy εsw depends on a single parameter

ξ =
∆pγ 6

pg,01/γ(ρc2)1−1/γ
, (2)

where ρ, c are density and speed of sound in the liquid. The shockwave energy increases with ξ and thus
with the driving pressure difference and decreases with the partial pressure of free gas. On the other hand,
rebound is enhanced for a lower driving pressure difference and a higher gas content.

The aim of the presented work is to numerically investigate and reproduce the findings of Tinguely et
al. [2] and to thereby validate our gas modeling approach.
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Thermodynamic model
We employ a multi-component homogeneous mixture model [7]. The cavitating liquid (lv) and the non-
condensable gas (g) are described with one mixture fluid, which is defined by the volume averaged density
inside a computational cell ρ = ∑βφ ρφ . βφ denotes the volume fraction and ρφ the density of each
component φ = {lv, g}. This single fluid approach implies that within a computational cell all phases
have the same velocity, temperature and pressure. Since the pressure in the bubble is p = pvap + pg, the
pressure acting on the vapor is pvap = p− pg = (1− βg) p. A coupled equation of state (EOS) gives the
pressure as a function of the mean density p = p(ρ) and is obtained by expressing the densities ρφ with the
corresponding thermodynamic relations.

The cavitating water is described with a barotropic EOS, derived by integration of the isentropic speed
of sound ρlv = ρsat,liq +(plv− psat)/c2, where ρsat,liq is the saturation density for liquid water and psat the
saturation pressure. Phase change is modeled assuming local thermodynamic equilibrium. For p > psat,
there is purely liquid water and c = 1482.35m/s. For p < psat, there is a liquid vapor mixture with
c = 0.1m/s as a typical value for an equilibrium isentrop.

The non-condensible gas phase is described with ρg = ρg,ref(p/pref)
1/γ , where ρg,ref is the reference

density at the reference pressure pref. In the presented results the gas is modeled isothermal with γ = 1.
Viscous effects are considered in our simulations using a linear blending with volume fractions for the

mixture viscosity.

Numerical Method
The thermodynamic model is embedded in a density-based fully compressible flow solver. For the numerical
model a higher order implicit large eddy approach for narrow stencils [8] is utilized. In implicit SGS the
truncation error of the discretization serves as a subgrid-scale model for turbulence. Shockwaves and pseudo
phase boundaries are detected with a sensor and in such regions an upwind based second order scheme is
used. In smooth regions, on the other hand, a high order central discretization scheme with regularization
terms is applied. Time integration is done using a 4-stage Runge-Kutta method with the Courant Friedrichs
Lewy (CFL) number set to 1.4.

In [8], simulations of a spherical single vapor bubble collapse have been performed, comparing a more
dissipative scheme and the applied one. The higher order discretization scheme was chosen for this work,
since it resolves the pressure peaks more accurately.

Setup
A vapor bubble with an initial radius R0 of 4 · 10−4 m is placed in the center of a box with dimension 2 L
in each direction, where L = 0.1 m. Taking advantage of the symmetry, only an eighth of a vapor bubble is
simulated. The domain is discretized with an equidistant grid within a cubic sub-domain with an edge length
of 1.25 R0 and for the outer part a grid stretching is applied. Simulations are performed on two different
grids with 20 (coarse) and 80 (fine) computational cells over the initial bubble radius 1.25 R0 .

For the investigation, the initial gas content in the bubble pg,0 and the driving pressure difference
∆p = p∞− psat are varied covering different combinations of ∆p = {10kPa, 30kPa, 80kPa} and pg,0 =
{0Pa, 100Pa, 1000Pa}. During the simulations, the pressure signal is recorded by pressure probes placed
in radial direction between 0.25R0 and 1.5R0 with a distance of 0.25R0.

Results
We mainly focus on the operating points ∆p = 10 kPa with pg = 0 Pa and pg = 100 Pa and its ξ -equivalent
∆p = 100 kPa; pg = 1000 Pa. Fig. 1 (a) compares the temporal evolution of the normalized bubble radius
R/R0 for different gas contents and grid resolutions. The time is normalized to the Rayleigh collapse time
τC = 0.915 ·R0

√
ρ/∆p [9]. Without gas, there is a very small rebound after the shockwave has propagated

outwards. In configurations with gas the bubbles rebound significantly, and rebound increases with grid
resolution, nearly matching the theoretical inviscid prediction of 42.7 % in maximum relative rebound radius



at 41% for the fine grid. Moreover, the results of the ξ -equivalent set-up on the coarse grid are shown and
verify that there is a ξ - similarity for the rebound.

Besides the rebound, the non-condensable gas in the vapor bubble also affects the intensity of the emitted
pressure wave. Fig. 1(b) shows the monitored pressure for the probes at different positions for different gas
contents and grid resolutions. For all configurations, the radial decay of the maximum pressure is clearly
visible and the presence of gas reduces the maximum pressure. The damping effect of the gas is, in general,
more distinct for probes closer to the bubble center and stronger on the finer grid resolution. Additionally,
the pressure signals reveal that the collapse time is perfectly matched. On the coarse grid the collapse time
is slightly smaller, which is in agreement with the observations of [8]. The bubbles containing gas collapse
later since the effective pressure difference is reduced by the gas.

(a) Collapse dynamics of different configurations. (b) Pressure signals from the probes 0.5R0-1.5R0

Figure 1. Simulation results

(a) t = 0 τc
pg,0 = 0Pa

(b) t = 0.99 τc (c) t = 1.02 τc (d) t = 0 τc
pg,0 = 1000Pa

(e) t = 1.05 τc (f) t = 1.44 τc

Figure 2. Time series for ∆p = 10kPa with pg,0 = 0 and 1000Pa.

Fig. 2 depicts the bubble collapse and the rebound at different time steps for ∆p = 10kPa with
pg,0 = {0 Pa, 1000 Pa,}. The left time series presents the bubble collapse without gas, showing the initial
bubble, the situation shortly before the collapse and the emitted shockwave after collapse. Analogously, the
dynamics of a bubble with a high gas content is visualized in the right time series. In this case the rebound
is clearly visible at t = 1.44 τc

In order to evaluate the energy partitioning, the normalized rebound energy εreb is obtained from the
maximal radius of the bubble in the first rebound εreb = (Rreb/R0)

3. For the normalized shockwave energy
εsw, the pressure signals are numerically integrated and set in relation to the respective values without gas.



Fig. 3 compares the simulation results with the theoretical energy partitioning based on the solution of the
adapted Keller-Miksis equation Eq. 1 over ξ . Our results are in good agreement with the theoretical ones
and grid refinement leads to a better approximation to the theoretical model. Our simulation results confirm
a ξ equivalence. The rebound for the ξ -equivalent configurations is the same, the normalized shockwave
energy is higher for the higher pressure difference and better matches the theoretical model.

Figure 3. Simulation results in comparison with the theoretical energy partitioning proposed by Tinguely et
al. [2].

Conclusion
With our simulations, we could reproduce the physical effects of gas inside a vapor bubble. Free gas in a
vapor bubble leads to a stronger rebound and dampens the emitted shockwave. This effect is already visible
on coarse grid resolutions, but gets more pronounced for higher grid resolutions. Additionally, we were
able to reproduce the partitioning into rebound and shockwave energy proposed by Tinguely et al. [2] and
could confirm a ξ = (∆pγ 6)/(pg,0

1/γ(ρc2)1−1/γ) equivalence, i.e. same ξ -values result in the same rebound
behavior and reduction of the shockwave energy. This validation allows us to investigate the effect of free
gas on more complex configurations such as a bubble collapse at a wall.
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