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Abstract 

 

When a cavitation bubble collapses in vicinity to a solid surface, high flow velocities are induced. They 

involve remarkably high but unsteady wall shear rates. Even though they are crucial in ultrasonic 

surface cleaning or cavitation erosion, and their knowledge is needed for validation of numerical 

methods, they have not been measured so far due to experimental difficulties. Here, a wall shear rate 

raster microscope was developed. It bases on an electrochemical principle and involves a model to 

solve the appropriate convection-diffusion equation. As wall shear rate sensor, a microelectrode was 

flush-mount into a solid surface. With this method, wall shear rates on micrometer and microsecond 

scales can be resolved. The wall shear rates produced during the collapse of a single, laser generated 

bubble (maximum radius about 400 µm) were measured in planes. Via the synchronously performed 

high speed imaging, the wall shear rates can be clearly related to details and the different stages of the 

bubble dynamics. This way the respective impacts of the flow phenomena involved on the generation 

of wall shear stress were evaluated. For example, the jet that accompanies the bubble collapse was 

resolved in terms of wall shear rates during its impact on the wall and its subsequent spreading in radial 

direction. The above experimental data are compared with results of numerical simulations of the 

collapse of a single bubble obtained with a compressible two-phase flow solver that uses barotropic 

equations of state. 

Keywords: bubble collapse, wall shear rates, cavitation 

Introduction 

Collapsing cavitation bubbles may induce significant mechanical effects on nearby solid surfaces. This is the case for 

example in ultrasonic cleaning [1][2], cavitation erosion [3][4][5] or cell manipulation [6][7][8]. Most of the 

mechanical interaction from a cavitation bubble is mediated by the shock wave that is emitted during the bubble 

collapse [9] and via the intense microflows generated by the bubble dynamics. Because a cavitation bubble can 

generate its intense microflows directly in the near-wall liquid layer at a solid boundary, the involved flows possess 

extraordinarily high wall shear rates. However, because the transient bubble dynamics occur are fast and local, the 

wall shear flows are short-lived and local. Consequently, there are hardly experimental techniques available for their 

measurement. Thus, the wall shear rates exhibited by cavitation bubbles are largely unknown. Here, we present 

measurements on the time-resolved wall shear rates produced by a single cavitation bubble. An electrochemical wall 

shear rate microscope was developed and used to spatially scan the wall shear rates produced by a single laser-induced 

cavitation bubble. The experimental results are compared to numerical computations performed using a Navier Stokes 

equations solver implemented in the open source toolbox OpenFOAM [10]. 

Experimental methods 

 



 

 

 

Figure 1 Left: Experimental arrangement. Right: Discretization of the computational domain with a refinement 
around the bubble. 

To measure the wall shear rates of a single collapsing cavitation bubble, an electrochemical wall shear rate raster 

microscope was developed, a sketch is given in Figure 1 (left). As sensor, it employs an electrode that is flush-mounted 

into a solid substrate. The substrate is connected to a two axis precision translation stage (12 nm resolution) to allow 

for a rastering of the wall shear rate in a plane (450 µm x 450 µm). At each measurement position, the complete time 

series of wall shear of a collapsing bubble (radius at maximum expansion: 𝑅max ≅ 425 µm) is recorded. Thus, one 

bubble needs to be generated for each measurement position. The preferred means for the repeatable production of 

spherical cavitation bubbles of defined properties at a confined position is by the focusing of a laser pulse. In the laser 

focus, the power density is large enough to induce optical breakdown, i.e. a plasma is generated. Around the plasma, 

a cavitation bubble forms, a mechanism termed optical cavitation [11][12]. This mechanism is used here: a laser pulse 

(5 ns pulse duration, 532 nm, ~ 1 mJ) is focused close to the substrate (PMMA slide of 1 mm thickness) and the 

electrode (platinum electrode 𝑑E = 25 µm diameter) into an aqueous solution in a glass cuvette of 125 ml volume. To 

avoid any spurious effects from the intense laser light, the laser beam is aligned vertical to the electrode surface (see 

[13]). With a high speed video camera, the bubble shape is imaged synchronized to the wall shear rate measurements 

allowing to relate the wall shear rate to the different stages of bubble dynamics. The wall shear rate is derived from a 

chronoamperometric measurement performed with a potentiostat of type Gamry Reference 600 that works at its 

maximum sampling frequency of 300 kHz. The sensor electrode is operated as working electrode, for counter and 

reference electrode a platinum wire is submerged close to the substrate. As buffer electrolyte KNO3 is used. As analyte, 

a Faradaic electrolyte is dissolved in the deionized water (Ru(NH3)6
3+, concentration 𝑐0 = 0.03 M). An electrical 

potential of 𝑈W = −0.7 V is maintained between working electrode and counter electrode. It allows for the reversible 

reduction of the Ru-complex at the surface of the working electrode, in turn giving rise to a reduction current of: 

𝐼 =
𝐹𝐴E𝜕𝑐(𝑧,𝑡)

𝜕𝑧
|

𝑧=0
,     (1) 

where F is the Faraday constant, 𝐴E the electrode surface, 𝑐 the concentration, and 𝑧 the coordinate perpendicular to 

the electrode surface whereas 𝑧 = 0 refers to the electrode surface [14]. The reaction kinetics of the Ru-complex are 

very fast, so a molecule of the Ru-complex can be considered to be reduced instantaneously, once it is found at the 

electrode surface. Therefore, the reaction current is limited only by the rate at which molecules of the Ru-complex 

reach the electrode. This rate is limited here only by diffusion and convection. The equation describing the 

concentration change is the convection diffusion equation. It reads: 

𝜕𝑐(�⃗�, 𝑡)

𝜕𝑡
= 𝐷∆𝑐(�⃗�, 𝑡) − �⃗⃗�(�⃗�, 𝑡)𝛻𝑐(�⃗�, 𝑡) ,                                                     (2) 



 

 

where 𝐷 is the diffusion constant, 𝑐 the concentration, and �⃗⃗� the velocity. Here, by convection, the cavitation bubble 

increases the transfer rate of the electrolyte concentration to the electrode. This effect is exploited here. For the present 

situation, Equation (2) can be simplified: The electrode is operated as a macro electrode. This is achieved by the 

application of the working potential in sufficiently short intervals. Then, the flux to the electrode is planar, allowing 

for a one-dimensional treatment. Furthermore, the diffusion layer thickness 𝛿 is smaller than 𝑑E. Within the small 

diffusion layer at the solid (𝛿 < 25 µm), the flow can be assumed to be parallel to the boundary and the flow profile 

is assumed to be linear. With these assumptions one arrives at the following parabolic differential equation for the 

wall shear rate 𝐺(𝑡) =
𝜕𝑢(𝑡)

𝜕𝑧
|

𝑧=0
, where 𝑢 is the x-component of the flow velocity: 
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= 𝐷
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+ 𝐺(𝑡)

𝑧

𝑑E

(𝑐0 − 𝑐(𝑧, 𝑡)) .     (3)  

In Equation (3), the wall shear rate appears as a source term. Its determination is an implicit problem. We solve it here 

with an optimization approach. For different candidates of 𝐺, the concentration profile was simulated using the toolbox 

Matlab (pdepe function). For each concentration profile, the resulting electrical currents were calculated. Then 𝐺 was 

selected as the value at which the simulated current equals the measured current 𝐼. More details on this procedure and 

on the wall shear rate microscope can be found in [15]. From the wall shear rate, the wall shear stress 𝑠 can be 

calculated by: 𝑠 = 𝜇𝐺, where 𝜇 is the viscosity of water. 

Numerical methods 

The bubble collapse is simulated using the density based CavitatingFoam solver of OpenFOAM. It is a fully 

compressible two-phase flow solver that applies barotropic equations of state and an Euler-Euler approach to solve 

the Navier-Stokes equations on a fixed Eulerian grid, considering gas and liquid phases as homogeneous mixture. 

Here, the liquid phase is water, the gas phase is water vapor. The mass fraction of the vapor in the mixture α is assumed 

to be a continuous function of space and time. It is determined as: 

𝛼 =  
𝜌m− 𝜌w,sat

𝜌v,sat−𝜌w,sat
 ,     (4) 

where 𝜌m is the mixture mass density, 𝜌w,sat is the density of water at saturation and 𝜌v,sat is vapor saturation density. 

Drop in the saturated liquid density below vapor saturation density indicates the presence of cavitation. 𝛼 = 0 means 

the presence of only the liquid phase, whereas 𝛼 = 1 indicates cavitation zones. The mixture compressibility 𝜑m is 

modelled using Wallis linear model [16] given by:  

𝜑m =  𝛼𝜑v + (1 − 𝛼)𝜑w ,     (5) 

where 𝜑v and 𝜑w are the liquid and the vapor compressibility. Further, the mixture viscosity 𝜇m is computed as: 

𝜇m =  𝛼𝜇v + (1 − 𝛼)𝜇w ,     (6) 

where 𝜇w and 𝜇v are the viscosity of water and vapor respectively. The relation between pressure and density is 

defined as: 

𝐷𝜌m

𝐷𝑡
= φ 

𝐷𝑃

𝐷𝑡
 .      (7) 

Above equation can be used directly in the continuity equation to formulate a pressure equation or integrated to obtain 

the pressure as a function of the density.   

Simulations are carried out in a three dimensional domain without the assumptions of any symmetries in order to also 

simulate the bubble dynamics after the first collapse, when many bubble related phenomena become inherently three 



 

 

dimensional. The size of the computational domain is 5 x 5 x 5 mm3. Figure 1 (right) illustrates the plane section of 

the finite volume discretized domain. The flow is assumed to be laminar. The maximum acoustic Courant number is 

limited to 0.5 by choosing appropriate time steps. To reduce computational costs, the grid is refined to a minimum 

cell size of 6.25 µm only in region of interest, i.e. the collapse region. Furthermore, the bubble is initialized at its 

maximum expansion, defining the initial internal pressure and vapor volume fraction. Thus, the initial expansion from 

plasma seeding to maximum expansion is not simulated. 

Results 

An overview over the bubble dynamics is given in Figure 2 through the evolution of the bubble shape. The bubble 

collapses in vicinity to the substrate with the integrated wall shear rate sensor. The bubble was seeded at 𝑡 = 0 µs. 

The bubble life time 𝑇L is defined as the time from bubble generation (plasma seeding) to bubble collapse. Here, times 

are given in normalized form 𝜏 = 𝑡/𝑇L, where 𝑇L ≅ 89 µs. 

 
Figure 2 Photographic image series of the time evolution of the bubble shape. Normalized time 𝝉 are given in 

the top right corner of each image. The rigid boundary is depicted in the first frame. On the solid surface a 
mirrored image of the bubble shape is visible. 

From 𝜏 = 0 to 𝜏 = 0.5 the bubble expands radially. After 𝜏 = 0.5, the bubble collapses, initially in a merely spherical 

manner, towards the end of the collapse phase, increasingly aspherically. At 𝜏 = 0.96, a small indentation on the 

bubble north pole is visible, a consequence of the jet that pierces the bubble and impacts perpendicular on the substrate 

[12]. After the collapse, at 𝜏 = 1.00, the bubble is in the rebound phase up to 𝜏 ≅ 1.35: it takes a flat shape and spreads 

directly over the boundary. The bubble now has a toroidal shape [17][18], which is however  not visible in this side 

projection. Then, the bubble collapses (toroidally) at 𝜏 ≅ 1.75. After the second collapse, main parts of the bubble 

have disintegrated and only a small bubble in the center shows some afterbounces. 

In Figure 3 the respective shear rates are shown for four instances of time, in the top column experimental data is 

shown, in the bottom column data obtained from the numerical simulation. At the time instance 𝜏 = 0.72, the bubble 

only undergoes a radial oscillation (sometimes called volume pulsation), i.e. it remains merely spherical. During this 

type of dynamics, wall shear rates are very low. Below the bubble center they are minimum because a stagnation area 

is formed. At the next time instance, 𝜏 = 1.03, the jet has pierced the bubble and impacts on the substrate. From the 

jet impact, wall shear rates are now about 25 times larger. At the axis of symmetry, again a stagnation area, this time 

from the jet, is formed. At 𝜏 = 1.23, the wall shear rates are still large as the bubble rebounds at the substrate. Thereby 

liquid is accelerated annularly outwards. The ring of high wall shear consequently expands radially (not shown here). 

The figure at 𝜏 = 1.73 presents an intriguing situation. The (toroidal) bubble is about to collapse. Now, the highest 

wall shear rates are measured 𝐺max = 5.88 106 s−1 during the situation in which flows directed inwards from the 

outer torus wall and the flows from the inner torus wall directed outwards collide. 

After this collision of flows, no significant shear forces are anymore actuated on the solid surface. This is consequence 

of the formation of a ring vortex that is ejected from the surface. Thereby, the moving liquid is convected remote from 

the solid surface into the bulk. Figure 4 illustrates the flow field, obtained from the numerical simulation. This behavior 

was experimentally observed and quantitatively investigated before [18]. 

 



 

 

 
Figure 3 Comparison between measured wall shear rates (top column) and computed wall shear rates (bottom column) on the substrate 
surface. Four different times are chosen (𝝉 = 𝟎. 𝟕𝟐, 𝝉 = 𝟏. 𝟎𝟑, 𝝉 = 𝟏. 𝟐𝟑, 𝝉 = 𝟏. 𝟕𝟑) that reflect different stages of the bubble dynamics 

(radial oscillation, jet impact, rebound, collision of flows). The data is height and color coded. The height coding is the same for every image 
(vertical axis wall shear rate 𝑮 = 𝟎. . 𝟔 𝟏𝟎𝟔 𝐬−𝟏), the respective color levels are scaled to each maximum wall shear rate 𝑮𝐦𝐚𝐱. 

 

 

Both datasets shown in Figure 3 match well. They show the same features and almost the same maximum wall shear 

rates. This can be considered a confirmation for the numerical as well as the experimental method. However, 

differences between experiments and computations can be observed. In general, the experimental data shows a 

broadened structure, while according to the numerical computation, the wall shear rates seem to be locally more 

confined. A main reason for this appearance can be found in the experimental rastering methodology, in which the 

wall shear rates are measured from many bubbles. Even though we took measures to take into account only same-

sized, spherical bubbles, still some jitter on the bubble life time (and consequently the geometric extension of the 

bubble at a given instance of time) is unavoidable. This jitter, is expected to geometrically smooth out the experimental 

data, and can be especially seen on the volcano-like structure that decays much smoother outwards in the experimental 

case (see 𝜏 = 1.72). The accuracy of the numerical simulation could be increased by a finer spatial and temporal mesh 

size. Also, the spherical initialization of the bubble at its maximum expansion lets the simulated situation differ from 

the experimental one, where the bubble as it grows out of its plasma spot deforms due to the influence of the boundary. 

Also, the determination of the bubble stand-off distance to the wall is subject to some uncertainty. This is important 

because the stand-off distance is known to critically influence the bubble dynamics and consequently the generation 

of wall shear forces. 



 

 

 
Figure 4 Flow field (simulated) after the detachment of the flow from the collision of flows has taken place and a ring vortex is formed, seen 

here in side projection. The boundary is located at 𝒛 = 𝟎. The gas phase is overlaid in gray. 

 

 

 

Conclusion 

A cavitation bubble generates intense microconvection directly at solid surfaces. A significant force transmission 

and potential surface alteration is induced by the wall shear flow. So far, experimental techniques for the 

measurement of the respective wall shear rate were limited. Here, the wall shear rates of a single collapsing 

cavitation bubble were measured in high spatial and temporal resolution. The wall shear rates were related to the 

bubble dynamics via synchronized high speed imaging. In addition, numerical simulations were carried out. The 

experimental results are consistent with numerical simulations. The wall shear rates during jet impact and toroidal 

bubble collapse could be quantified. They are shown to be the most significant ones generated by the bubble 

dynamics.  
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