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Abstract 

In this paper a fully Eulerian Monte Carlo method called ‘Stochastic Field Method’ (SFM) is applied 

on cavitating flows in an injection nozzle from the automotive industry. After the successful application 

to the field of combustion [1], the Stochastic Field Method is now applied to two phase flow. In the 

presence of numerous bubbles the method provides advantages in computational speed and statistical 

convergence compared to the classical Lagrangian-particle Monte Carlo methods. Modeling random 

processes which are omnipresent in combustion and cavitation requires careful treatment: Unphysical 

results are obtained, if in a nonlinear process a randomly distributed variable is merely approximated 

by its average. Thus the whole distribution must be considered. A probability density function (PDF) 

is used to describe the probabilistic behavior. The corresponding evolution and transport in space is 

governed by the PDF transport equation. Instead of solving the high dimensional PDF transport 

equation directly it is less complex to discretely approximate the PDF by random samples. In contrast 

to other stochastic methods that usually consider these samples as Lagrangian particles, the Stochastic 

Field Method describes them as fluctuating Eulerian fields. This point of view allows PDF description 

in a fully Eulerian framework, thus omitting the cumbersome coupling of Eulerian and Lagrangian 

solvers. The very first application of the Stochastic Field Method to a multi-phase flow was published 

by our working group [2]. Here, stochastic partial differential equations (SPDEs) describe samples of 

the disperse phase volume fraction as Eulerian fields. The collective of all samples approximates the 

probability density function at a considered location. Within the present paper the implementation to a 

commercial code is discussed. Application to an industrial case namely a cavitating flow within an 

injection nozzle is presented. Collecting samples of several time steps allows the SFM to visualize the 

volume fraction’s or bubble size’s distribution within individual computational cells. When applying 
the Stochastic Field Method to multiphase problems a number of physical aspects have to be considered 

which require careful analysis. These difficulties are pointed out and discussed.  
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Introduction 

Random behavior can be observed experimentally in both, combustion and cavitation problems. When including this 

behavior in numerical simulations the consideration of rare events is advantageous in the presence of nonlinear 

processes. Stochastic models yield an attractive possibility to observe these fluctuations in numerical investigations. 

The direct calculation of the PDF is associated with exhaustive numerical costs. Instead of considering the PDF, it is 

usually approximated by samples with a Monte Carlo method to reduce effort. Methods that treat these samples as 

Lagrangian particles are well known, where virtual particles are added to the flow and observed in a Lagrangian point 

of view. The flow itself is investigated in a Eulerian frame. 

 

Basics of the Stochastic Field Method 

The Stochastic Field Method regards samples approximating the PDF in a fully Eulerian description. Instead of 

Lagrangian particles Eulerian fields of concentrations are considered. Several Lagrangian particles and their 

corresponding stochastic field are presented in Figure 1 for an exemplary peculiarity. Here, the stochastic field delivers 

for every computational cell one concentration which is interpreted as a sample to approximate the PDF. Note that 

Figure 1 only represents one peculiarity. Note that, in the presence of fluctuations (e.g. in a turbulent flow) the 

Lagrangian particles are not located at deterministic positions. Analogously, the corresponding stochastic field 

exhibits statistical fluctuations. To include several peculiarities into the numerical investigation, several stochastic 

fields are calculated. Several possibilities are shown in Figure 2. To approximate the PDF within a specific cell, the 

concentrations from the stochastic fields are exploited. For illustration, the concentrations from eight stochastic fields 

are marked green in Figure 3 (‘samples’). Building the histogram of these samples clearly approximates the 

corresponding PDF. Considering samples using stochastic fields offers several advantages: The fully Eulerian 

description makes the computationally expensive coupling of two solver architectures obsolete, which is the case for 



Lagrangian particles. For a statistically reliable description of the PDF a sufficient number of samples is necessary. 

When using Lagrangian particles regions of dilute sample concentration or high sample concentration can occur. To 

overcome this, the methods of “clustering” and “cloning” were developed, see e.g. [3], but require additional 

computational time. The Stochastic Field Method delivers within every computational cell the same number of 

samples which avoids the need for methods like “clustering” and “cloning”: It automatically delivers a predefined 

number of stochastic fields. In general the usage of 8, 16 [4] or 12 and 18 [5] fields is a good compromise between 

accuracy and computational effort. 

 

 

Figure 1: Lagrangian particles and corresponding 

Stochastic Field. 

 

Figure 2: Several Stochastic Fields each representing one peculiarity and differing 

by the influence of the random term. 

 

Figure 3: the histogram of the samples approximates the PDF. 

Stochastic Field Method in the field of combustion 

The stochastic partial differential equation describing a stochastic field was derived by Valiño [1] and Sabel’nikov 
and Soulard [6] in the field of combustion. It goes back to the joint probability density function (JPDF) of a scalar c 

and a velocity U derived by Pope [7]. This derivation builds on the conservation equation of a scalar c which reads � �ܿ�� + �� �ܿ�� = − ���� + �ܵ ( 1 ) 

where � represents the diffusive mass flux. With Fick’s first law this can be expressed  � = −� �ܿ�� 
with the molecular diffusion coefficient �, the fluid density � and the source term ܵ. The mean scalar transport 

equation reads [8] �ܿ̅�� + �̅ �ܿ̅�� = ��� [ሺ� + ��ሻ �ܿ̅��] + ܵ̅ ( 2 ) 

with the turbulent diffusion coefficient �� . Valiño [1] derived the transport equation of the stochastic fields (eq. ( 3 )). 

Sabel’nikov’s and Soulard’s work [6] presents a less restrictive derivation, which results in the same equation, but 

with vanishing molecular diffusivity �. In many practical examples the molecular diffusivity is small compared to the 

turbulent diffusivity �� . Consequently, both results are considered to be equivalent. 

 ��ܻ� + �̃ �ܻ�� + √ʹ�� �ܹ̇ �ܻ�� − ͳۄ�ۃ ��� ቆۄ�ۃሺ� + ��ሻ �ܻ��ቇ = ;ሺܻܯ �, �ሻ + ܵሺܻሻ ( 3 ) 

 

In equation ( 3 ) Y is one sample of the concentration of a species and ܹ is a Wiener Process where the Ito 

interpretation was used. ܯ represents the micromixing term which can be modeled, e.g. by the Interaction by Exchange 



with the Mean (IEM) model [9]. In the PDF transport equation of the species concentration the turbulent advection is 

modelled by the gradient diffusion assumption, which creates the ‘diffusion-like’ term (second derivative) in the 

transport equation of the corresponding stochastic field equation (see [6] for details). Several Stochastic fields are 

calculated differing by the influence of the Wiener process term approximating the PDF; depending on the influence 

of the Wiener process, the individual samples may have bigger or smaller values. For the calculation of the PDF’s 

expectation Pope’s [7] definition of the ensemble average of a random variable � = �ሺ�, �ሻ is used  ۄ�ۃ� ≡ ͳܰ ∑ �ሺ�ሻ�
�=ଵ . ( 4 ) 

In his example �ሺ�ሻ is the nth ‘experiment’ from N nominally identical ‘apparatus’ and ۄ�ۃ� estimates ۄ�ۃ since �ሺۄ�ۃ�ሻ =  ( 5 ) ۄ�ۃ

for any ܰ. Further Pope states that ‘for large ܰ, the Central Limit Theorem reveals the relationship between ۄ�ۃ� and [7] ’ۄ�ۃ. Analogously this definition (eq. ( 4 )) can be used to calculate the expected value ۄܻۃ� from the samples ܻሺ�ሻ 
approximating the PDF  ۄܻۃ� ≡ ͳܰ ∑ ܻሺ�ሻ�

�=ଵ . ( 6 ) 

Ensemble averaging stochastic fields in the corresponding transport equation (eq. ( 3 )) yields the transport equation 

of the expected value. With vanishing Wiener process [10] and vanishing micromixing term it matches the mean 

concentration from the averaged scalar transport equation (cmp. eq. ( 2 )).  

 

Application to the field of two phase flow 

Two phase flows are often described by using the two fluid model [11], [12]. The authors present the average balance 

equation of mass of phase k, the so called volume fraction equation. In both descriptions the volume fraction equation 

reads  ���̿̿ ̿�� +  ∙ (��̿̿ ̿�̂) = ܵ , ( 7 ) 

with the volume fraction1 of phase k defined as  � =  ܺ̅̅ ̅, ( 8 ) 

with the component indicator function of a realization r [12] 

 ܺሺ�, �; �ሻ = {    ͳ, if � א � in realization �    Ͳ, otherwise                         ( 9 ) 

 

and the average defined for a function � [11] �̅̅ ̅ሺ�; �ሻ = lim�→ ͳ∆� ∫ �ሺ�; �ሻ݀�[∆�]� , ( 10 ) 

where � depicts the interface thickness. The phase average of a function �, in equation ( 7 ) applied e.g. on the density, 

is defined as [11] �̿̿ ̿ =  �̅̅ ̅� . ( 11 ) 

The density weighted average of a function �, in equation ( 7 ) applied e.g. on the velocity, is defined as [11] �̂ =  ��̅̅ ̅̅ ̅̅�̅̅ ̅ . ( 12 ) 

Applying the Stochastic Field Method to two phase flows where the stochastic fields are formulated for the scalar 

volume fraction � reads 

                                                                        

1 Mostly � is referred to as the volume fraction of phase k. In fact, it is the probability of phase k occurring at 

location x at time t [13]. 

 



���� + ��̂ ���� + ܴ = ܵሺ�ሻ. ( 13 ) 

Here, R represents a stochastic term in Ito interpretation. Note that even though we distinguish several fields we use 

the common average velocity field from the two fluid model. This equation requires some comments: 

 

1. For a stationary and incompressible flow (�̂ = Ͳ) the average balance equation (eq. ( 7 )) can be divided 

by �̿̿ ̿ and simplified: ���� + �̂ �  = ܵ�̿̿ ̿ = ܵ̃ ( 14 ) 

It is evident that the PDF’s expectation should be identical to the average volume fraction from eq. ( 14 ). 

Analogously, the transport equation of the PDF’s expectation should be identical to the average balance 

equation (eq. ( 14 )).  

Applying Pope’s definition ( 4 ) to calculate the expected volume fraction ۄ�ۃ� from the samples �ሺ�ሻ 
approximating the PDF yields ۄ�ۃ� ≡ ͳܰ ∑ �ሺ�ሻ�

�=ଵ . ( 15 ) 

The transport equation of the expected volume fraction can be derived by averaging the equation of the 

stochastic field (eq. ( 13 )) over an ensemble of ܰ stochastic fields with the operator ۃ  �ۄ∙ۃ���� �ۄ + ̂��ۃ ����ۄ� + �ۄܴۃ = �ۄሺ�ሻܵۃ . ( 16 ) 

The averages of the first two and the last term yield (cmp. [7]) ۃ���� �ۄ = ���ۄ�ۃ� ̂��ۃ  ����ۄ� = ��̂ ���ۄ�ۃ� �ۄሺ�ሻܵۃ  = ܵሺ�ሻ̅̅ ̅̅ ̅̅ . ( 17 ) 

Since ܴ represents a stochastic term in Ito interpretation its average vanishes (see [13] for details). 

Consequently the transport equation of the expected volume fraction corresponds to the average balance 

equation ( 14 ). An essential difference between the original stochastic field formulation taken from the field 

of combustion (eq. ( 3 )) and the proposed formulation for the two fluid model is the exclusion of a ‘diffusion-

like’ term. If the ‘diffusion-like’ term was retained it would appear in the transport equation of the expected 

volume fraction rendering equation ( 16 ) and equation ( 14 ) inconsistent. 

2. The micro-mixing term M in equation ( 3 ) represents the molecular mixing on the smallest scales (cmp. eq. 

( 1 )). Since no small-scale mixing is included in the local instant formulation of the continuity equation for 

each phase [11], there is no reason for including micro-mixing into the stochastic partial differential equation. 

This was also confirmed by the group of Oevermann [14]. 

3. In analogy to the average balance equation (eq. ( 7 )) the convection term in equation ( 13 ) contains the 

density averaged velocity ��̂. 

4. The formulation of the stochastic term ܴ should be formulated problem dependent. The formulation which 

applies the analogy to the Stochastic Field Method in combustion (eq. ( 3 )) is conceivable. However, the Ito 

interpretation should be used to retain the equality of the ensemble average over stochastic fields (eq. ( 16 )) 

and the average balance equation (eq. ( 14 )). 

 

The stochastic fields represent samples approximating the PDF of volume fractions. Since the two fluid model needs 

for further calculations an average volume fraction, samples are averaged after each iteration step. Nevertheless, 

nonlinear processes depending on the volume fraction can use the PDF approximated by samples, and this avoids the 

modelling error which is evident in models based on one average value. 

Application to a cavitation example from automotive industry 

The Stochastic Field Method is implemented into the commercial CFD Code AVL FIRE™ and applied to a 2D as 

well as a 3D flow in an injection nozzle where cavitation occurs. The resulting average volume fraction of the disperse 

phase is shown in Figure 4. For a specific cell the average volume fraction and the volume fractions from the stochastic 

fields can be plotted over the time.  



 

 

Figure 4: average volume fraction of the disperse phase in a 2D injection nozzle. The positions for the distributions in Figure 7 are marked 

with A, B and C. 

Figure 5 compares the development of the stochastic fields for a cell within the cavitation area. The stochastic fields 

representing the possible peculiarities are clearly influenced by the random term. They are perturbed around the 

averaged field. Using the Stochastic Field Method allows a consideration of peculiarities that greatly differ from the 

averaged value (big difference between stochastic field and averaged field in Figure 5). This might have strong 

influence on the simulation result when strong nonlinear processes are present. This influence is ignored in methods 

dealing only with one average value. 

 
Figure 5: volume fraction of the stochastic fields and the average field for a cell within the cavitation zone. 

Figure 6 shows simulation results for a 3D injection nozzle with moving needle. Due to cavitation effects the disperse 

vapor phase is generated at the nozzle entrance on the left-hand side. Its average volume fraction is plotted in Figure 

6 (top). In addition two stochastic fields are plotted (bottom). Taking a closer look, the stochastic differences can be 

observed. 

 
Figure 6: volume fraction of the dispersed phase; top: mean, bottom: two stochastic fields 

 

Collecting values occurring in the stochastic fields over several time steps allows the construction of a histogram. It 

gives access to distributions of volume fraction within different regions. The distribution of the volume fraction of the 

disperse phase is given in Figure 7 for a cell outside, at the edge or within the cavitation sheet, respectively. Starting 

from a region outside the cavitation sheet (Figure 7a) the distribution is shifted towards higher volume fractions on 



the way to the center of the cavitation sheet. The distribution of the volume fraction can be used for the derivation of 

other distributions, such as the distribution of bubble size. 

Conclusion 
Originating from the field of combustion the Stochastic Field Method was applied to cavitating multi-phase flow. It 

was pointed out that the SPDE describing the stochastic fields cannot contain a ‘diffusion-like’ term nor a micro-

mixing term to be consistent with the two fluid model. The Stochastic Field Method was applied to a cavitating flow 

within an injection nozzle. Distributions of volume fractions were shown. 

 

Figure 7a: Distribution of volume fraction 

for a cell outside the cavitation sheet 

(marked in Figure 4 with A). The stochastic 

fields only contain low volume fractions 

 

Figure 7b: Distribution of volume fraction 

for a cell at the edge of the cavitation sheet 

(marked in Figure 4 with B). 

 

Figure 7c: Distribution of volume fraction 

for a cell within the cavitation sheet (marked 

in Figure 4 with C). The stochastic fields 

contain volume fractions with values close to 

1. 
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