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Abstract  

A parametric study is conducted to investigate bubble cloud dynamics near a rigid wall when excited 

by a sinusoidal pressure field. It is shown that a preferred driving frequency which can incur the 

strongest collective bubble behavior and result in the highest pressure impact on the nearby wall 

exists for a given bubble cloud initial condition. Such preferred driving frequency is strongly 

dependent on the driving amplitude but independent on the initial ambient pressure. The preferred 

driving frequency decrease as the driving amplitude is increased and approaches the natural 

frequency of bubble cloud predicted by linear theory when the driving amplitude is very small.    
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Introduction  

The collapse of a cloud of microbubbles near a rigid boundary is known to be as one of the most destructive 

forms of cavitation due collective bubble dynamics resulting in high pressure generation during successive collapses 

and rebounds. Cloud cavitation can be observed in hydrodynamic applications such as on rotating propellers or 

hydrofoils[1]–[5] as well as in high intensity acoustic fields such as in ultrasonic devices, Shock Wave Lithotripsy 

(SWL) for kidney stone fragmentation [6] and High Intensity Focused Ultrasound (HIFU) for tumor ablation [7]. 

Our previous studies [3], [4] have shown that the bubbles in the cloud, collapse in a cascading fashion with the 

bubbles farthest from the wall and cloud center collapsing first and those closest to the wall and center collapsing 

last. This results in a pressure wave moving inward and toward the wall. In order to contribute to the understanding 

of the physics involved in the complex interaction between the many bubbles and the imposed pressure field, and to 

predict the loading on a nearby object, we have applied our coupled Eulerian-Lagrangian two-phase flow modeling 

[8], [9] to an initially spherical bubble cloud to study the effects of the excitation amplitude and frequency. The 

advantage of the Eulerian-Lagrangian numerical approach is that it is a multiscale approach and captures key 

characteristics of both the bubbles’ dynamics and the overall cloud dynamics. It also enables one to account for the 

often-neglected slip velocity between the bubbles and the liquid, which results in micro-streaming with the bubbles 

migrating significantly when the driving pressure amplitude is increased. In [9] we  also considered the effects of the 

initial bubble radii, the bubble distribution, and the cloud distance from the wall and found that the strongest 

collective bubble behavior occurs at a preferred driving frequency for a given initial cloud condition. At this 

preferred driving frequency, pressure peaks orders of magnitudes higher than the excitation pressure, result from 

bubble interaction. However, our previous studies mainly focused on a high ambient pressure. In this study we will 

study the effect of the ambient pressure on the bubble cloud dynamics. In addition, the driving pressure amplitude 

and frequency are varied for different ambient pressures to investigate their effects on the bubble cloud dynamics 

and the resulting pressure at the wall as the bubble cloud collapses.   

Numerical Method  

The two-phase mixture in the bubble cloud is treated as a continuum with the continuity and momentum 

equations expressed as follows:    
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where m, m, u, and p are respectively the mixture density, dynamic viscosity, velocity, and pressure. m and m are 

related to the liquid and gas properties and to the gas volume fraction, ,  by: 

    1 , 1 .m l g m l g                  (2) 

Eq. (1) is coupled with equations describing the dynamics of the discrete individual bubbles in the cloud. 

Knowing at each instant all bubble radii and locations provides  (thus m and m) as a function of space and time 

and substitutes for the need of a mixture equation of state to close the system of equations. Each bubble is treated as 

a source, which represents volume change, and a dipole to represent translation. For each bubble, the equivalent 
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spherical radius, R(t), is obtained using a modified Keller-Herring equation [5], which accounts for the mixture 

compressibility and non-uniform pressure field: 
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where cm is the local sound speed in the mixture, pv is the liquid vapor pressure, pg is the bubble gas pressure, and    

is the surface tension. The term us
2/4, accounts for the pressure resulting from the slip velocity, us=uencub, between 

the host medium velocity, uenc, and the bubble velocity, ub , with [6].
 
 penc and uenc are the encountered pressures and 

velocities averaged over the bubble surface to account for local non-uniform flow. The bubble trajectory is obtained 

using the following equation of motion [7]: 
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where CL is a lift coefficient, ω  is the local vorticity, and CD is a drag coefficient. The last term is the Bjerknes 

force due to coupling between bubble volume rate and bubble motion. 

Numerical Simulations and Discussion 

We consider an initially spherical bubble cloud with a radius, A0, (Fig. 1), 

driven by a sinusoidal pressure,    = 1 sin (2 ) ,0P t P    f t   where P0 is the 

initial and average ambient pressure, =Pamp/ P0 is the normalized pressure 

oscillation amplitude, and  f  is the frequency. The cloud center is initially at a 

distance X0 from a rigid wall and is composed of small bubbles of initial radii R0. 

The bubbles are randomly distributed within A0, resulting in a quasi-uniform 

initial α0 within the cloud and all bubbles are initially at equilibrium with the 

pressure P0. We can identify in this problem two groups of parameters: one for 

the imposed pressure field (driving pressure and frequency) and one for the 

bubble cloud characteristics (cloud and bubble sizes and the void fraction). 

Fig. 2 shows an example time sequence of the bubble cloud response during 

the first cycle of oscillation for A0=X0=1.5 mm, R0 =50 μm, and α0=5%,  driven by the imposed pressure P0 = 1 atm, 

= 0.9 and f = 7kHz. The color contours indicate the pressure inside each bubble and the corresponding pressure 

loading at the wall. It is seen that the bubbles in the cloud grow first then collapse in a cascading fashion starting 

with the bubbles at the cloud top (farthest from the wall) collapsing first, and finally those on the bottom (closest to 

the wall) collapsing last and resulting a high pressure loading at the wall.  

 
Fig. 2: Time sequence of bubble cloud behaviors and pressure contours shown on the surface of bubbles and nearby wall for a bubble cloud with 

the initial conditions, R0 =50 μm, α0=5%,  and A0=X0=1.5 mm, driven by a sinusoidal pressure field with P0=1 atm, =0.9, and f=7 kHz.  

Our previous studies [8], [9] have shown that for a given bubble cloud initial geometric condition, the pressure 

loading at the wall when the bubble cloud collapses is highly dependent on the driving pressure amplitude and 

frequency. A preferred driving frequency was found to result in a maximum pressure loading for a given . However, 

the previous studies focused on a high initial pressure, P0 = 10 atm, and thus it would be interesting to investigate if 

the same trend exists for different initial pressures.  

To start with, Fig. 3 compares the effect of the driving frequency on the pressure loading at the wall centre when 

P0 = 1 atm (which is a more practical case for ultrasonic applications than the previously studied P0 = 10 atm) and 

=0.9. It is seen that the highest collective effects appear here close to 7 kHz. This is compared with the results of   

Fig. 1: Schematic of the problem 

of the dynamics of a bubble cloud 

near a rigid wall. 
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P0 = 10 atm as shown in Fig. 4. It can be seen that only a small shift in the peak driving frequency (7 kHz vs. 8 kHz) 

can be observed between these two initial ambient pressures even though the resulting maximum collapse pressure 

is more than five times higher for P0 = 10 atm. This implies that the preferred driving frequency may be little 

dependent on the initial ambient pressure. We are considering next a larger range of pressure changes to understand 

this behaviour.  

Fig. 3: Pressure versus time at the wall center created by bubble 

clouds for different driving frequency for P0 =1 atm, =0.9,  

R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Fig. 4: Effect of initial ambient pressure on Pmax1 vs f, for =0.9,  

R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Fig. 5 shows for the same driving frequency, f = 8 kHz, how the peak pressure,  Pmax1, varies with P0 . It is seen 

that the maximum pressure loading at the wall increases as the initial ambient pressure is increased indicating 

stronger bubble collapses at the higher pressures. This, however, reaches a plateau at the largest initial ambient 

pressures considered. 

Fig. 5: Effect of initial ambient pressure on the maximum pressure 

loading at the wall center for f=8kHz, =0.9, R0 =50μm, α0=5%, and  

A0 =X0=1.5 mm  

Fig. 6: Pressure versus time at the wall center created by bubble clouds 

for different driving frequency for P0 =1 atm, =1.25,  
R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Another set of cases at P0 = 1 atm and =1.25 is simulated and compared to =0.9 for different acoustic driving 

frequencies, to examine the effect of the driving amplitude, , on the peak amplitude at the wall. It is seen from Fig. 

7 that the preferred driving frequency, fmax , is about 4 kHz for =1.25, while it was 8 kHz for =0.9. This indicates a 

strong influence of . The effects of the driving amplitude on Pmax1 vs f is also seen in Fig. 7  It can be seen that the 

peak value of the pressure at the wall, Pmax1, increases and fmax decreases as   is increased. It is important to note 

that the preferred driving frequency, fmax, highlighted here is different from the natural frequency of a bubble cloud 

derived from linear bubble dynamics theory by  [10]: 
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which gives a value of fcloud = 23 kHz for the current case. Further expanding the range of   will allow one to 

investigate such dependency. Fig. 8 shows the dependency of fmax on .  It can be seen that when   is less than 0.2, 

fmax is compatible with fcloud. For   > 0.2,  fmax deviates significantly from fcloud. fmax decreases almost linearly with 

mailto:ctsung@dynaflow-inc.com


 

*Corresponding Author, Chao-Tsung Hsiao: ctsung@dynaflow-inc.com  

increasing   until  >1 where the fmax seems to reach a plateau. A plausible explanation for this saturation is the 

appearance of inertial cavitation  for  >1 ,where the bubble expansion and collapse a re  controlled by inertia 

of the fluid [11].  

 

  
Fig. 7: Effect of driving pressure amplitude on Pmax1 vs f, for  

P0 =1 atm, R0 =50μm, α0=5%, and A0 =X0=1.5 mm 
Fig. 8: driving frequency, for different relative driving pressure 

amplitudes, b) bubble cloud resonance frequency versus ξ, for  
P0 =1 atm, R0 =50μm, α0=5%, and A0 =X0=1.5 mm. 

Conclusions 

The dynamics of a bubble cloud subjected to a sinusoidal pressure field near a rigid wall is numerically studied 

using an Eulerian/Lagrangian two-phase flow model. Very strong pressures are generated at the wall during the 

cloud collapse at a resonance driving frequency. The study shows that the magnitude of pressure at the wall highly 

depends on the ambient pressure but not the resonance frequency. The study also shows that both the magnitude of 

the pressure and the resonance frequency are strongly dependent on the amplitude of the driving pressure. The 

magnitude of the pressure increases as the driving pressure is increased. The resonance frequency decreases as the 

driving amplitude is increased and approaches the natural frequency of the bubble cloud at small amplitude 

oscillations.    
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